Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Med ; 13(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38541826

RESUMO

Background: Rejection continues to be the main cause of renal graft loss. Currently, the gold standard for diagnosis is an allograft biopsy; however, because it is time-consuming, costly, and invasive, the pursuit of novel biomarkers has gained interest. Variation in the expressions of miRNAs is currently considered a probable biomarker for the diagnosis of acute rejection. This study aimed to determine whether miR-150-5p in serum is related to microvascular damage in patients with acute antibody-mediated rejection (ABMR). Methods: A total of 27 patients who underwent renal transplantation (RT) with and without ABMR were included in the study. We performed the quantification of hsa-miR-150-5p, hsa-miR-155, hsa-miR-21, hsa-miR-126, and hsa-miR-1 in plasma by RT-qPCR. The expressions between the groups and their correlations with the histological characteristics of the patients with ABMR were also investigated. Results: miR-150-5p significantly increased in the plasma of patients with rejection (p < 0.05), and the changes in miR-150-5p were directly correlated with microvascular inflammation in the allograft biopsies. Clinical utility was determined by ROC analysis with an area under the curve of 0.873. Conclusions: Our results show that the patients with RT with ABMR exhibited increased expression of miR-150-5p compared to patients without rejection, which could have clinical consequences, as well as probable utility in the diagnosis of ABMR, and bioinformatics may help in unraveling the molecular mechanisms underlying ABMR conditions.

2.
Comp Hepatol ; 9: 5, 2010 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-20178596

RESUMO

BACKGROUND: Temporal restriction of food availability entrains circadian behavioral and physiological rhythms in mammals by resetting peripheral oscillators. This entrainment underlies the activity of a timing system, different from the suprachiasmatic nuclei (SCN), known as the food entrainable oscillator (FEO). So far, the precise anatomical location of the FEO is unknown. The expression of this oscillator is associated with an enhanced arousal prior to the food presentation that is called food anticipatory activity (FAA). We have focused on the study of the role played by the liver as a probable component of the FEO. The aim of this work was to identify metabolic and structural adaptations in the liver during the expression of the FEO, as revealed by histochemical assessment of hepatic glycogen and triacylglycerol contents, morphometry, and ultrastructure in rats under restricted feeding schedules (RFS). RESULTS: RFS promoted a decrease in the liver/body weight ratio prior to food access, a reduction of hepatic water content, an increase in cross-sectional area of the hepatocytes, a moderate reduction in glycogen content, and a striking decrease in triacylglyceride levels. Although these adaptation effects were also observed when the animal displayed FAA, they were reversed upon feeding. Mitochondria observed by electron microscopy showed a notorious opacity in the hepatocytes from rats during FAA (11:00 h). Twenty four hour fasting rats did not show any of the modifications observed in the animals expressing the FEO. CONCLUSIONS: Our results demonstrate that FEO expression is associated with modified liver handling of glycogen and triacylglycerides accompanied by morphometric and ultrastructural adaptations in the hepatocytes. Because the cellular changes detected in the liver cannot be attributed to a simple alternation between feeding and fasting conditions, they also strengthen the notion that RFS promotes a rheostatic adjustment in liver physiology during FEO expression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...